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a b s t r a c t

We, for the first time, propose a phase-field model to simulate the evolution of void ensembles under
irradiation. The model takes into account one-dimensional migration of self-interstitial atoms (1-D
SIA), vacancy diffusion, the generation and reaction between SIA and vacancies as well as the nucleation
of voids. A one-dimensional random walker model (based on the theory of first-passage processes) is
applied to describe the fast 1-D SIA while the Cahn–Hilliard equation is used to describe the slow three
dimensional diffusion of vacancies. The coupling of these two methods greatly improves the computa-
tional efficiency for a system with strong inhomogeneity and anisotropy of diffusion. The formation of
void lattices is simulated with the resultant model. It is found that a void lattice forms when the mobility
of the 1-D SIA is four orders of magnitude larger than that of the vacancy mobility. A high generation rate
of interstitials during displacement cascades delays the formation of a void lattice.

Published by Elsevier B.V.
1. Introduction

During the last three decades, numerous fully or partially or-
dered nanostructures and microstructures such as voids, gas
bubbles, precipitates, and self-interstitial-atoms clusters have been
observed in irradiated materials [1–11]. The implications of
understanding the physical nature of this self-organization are
quite clear from a technological perspective because material’s
thermo-mechanical properties strongly depend on the microstruc-
ture. It is expected that understanding and predicting the effect of
irradiation conditions on microstructure and property evolution
would lead to better approaches to the design of radiation-resis-
tant materials and the optimization of nuclear plant operations.

Since the first observation of a void lattice in irradiated materi-
als [1], many theoretical models have been proposed to explain the
formation of ordered microstructures [12–17]. One important
family of the models is based on an elastic energy minimization
argument [17–20]. It is commonly accepted that the alignment of
precipitates in elastically soft directions in alloys is driven by the
minimization of elastic energy [21–24]. However, the void–void
elastic interaction is strong only when they are within a few void
diameters of each other. The elastic energy minimization argument
cannot explain how voids organize themselves over relatively long
distances, especially during the early stages of irradiation [12].
Another family of theoretical models is based on the fact that SIA
and small SIA clusters preferentially migrate along close-packed
directions or on close-packed atomic planes [25,26]. The particular
migration direction causes void alignment because unaligned voids
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receive a larger flux of SIAs compared to aligned voids. As a result,
the unaligned voids shrink while aligned voids nucleate and grow
to form the void lattice. Woo and Frank [14,15] adapted this idea
and described the evolution of void ensemble using the Fokker–
Planck equation. The stability analysis of this nonequilibrium sys-
tem shows that when the mean free path of a 1-D SIA becomes
comparable with the average distance between the voids, two pro-
cesses take place, i.e., the nucleation of voids is favored at the void
lattice sites, and voids initially nucleated at position where neigh-
boring voids are nonaligned will shrink. As a consequence, the void
lattice forms. But this model is unable to predict the evolution of
void ensembles. Heinisch and Singh [27] and Evans [13] simulated
the formation of void lattices with 1-D SIA and 2-D SIA using
Monte Carlo methods. However, the simulations were carried out
under a number of assumptions for scaling the center of voids
and the void size. In the present work, we propose a phase-field
model for studying the evolution of a void ensemble in a solid with
vacancy diffusion and 1-D migration of SIAs during irradiation. The
advantage of the model is that the three dimensional evolution of a
void morphology including the size distribution, shape and spatial
distribution of voids can be obtained without artificially scaling the
center and size of the voids.
2. Phase-field model of void evolution

Formation of the void lattice requires the migration and reac-
tion of vacancies and interstitials produced by energetic particle
radiation. Experiments [25,26] and molecular dynamics simula-
tions [28–31] show that interstitials have much larger mobility
than vacancies, and migrate along close-packed directions or on
close-packed atomic planes. Therefore, the model should consider
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both the slow and isotropic migration of vacancies and the fast and
anisotropic migration of interstitials in order to correctly describe
the evolution of a void ensemble. The Cahn–Hilliard equation is of-
ten applied to model systems that evolve via the diffusion of dis-
tinct species, where the inhomogeneity and anisotropy of a given
species’ diffusivity can be described by a diffusivity tensor. How-
ever, the time step is limited by the largest diffusivity or fastest
moving species. The method is not efficient for a system with
strong inhomogeneity and anisotropy of diffusion. Furthermore,
it is hard to describe the directional migration with a diffusivity
tensor.

In this work, we assume that (1) the diffusion of vacancies is
driven by the gradients of chemical potential and vacancy concen-
tration, and (2) the migration of SIAs follow the statistics of one-
dimensional random walks. The model uses cm (r,t) to describe
the vacancy concentration and cSIAðr; tÞ to describe the concentra-
tion of SIAs. For the sake of simplicity in this first generation model,
we only consider single vacancies and SIAs. It is straightforward to
describe mobile vacancy clusters and interstitial clusters with re-
lated concentration variables. In the framework of the phase-field
method, the diffusion of vacancies can be described by the Cahn–
Hilliard equation [32],

@cmðr; tÞ
@t

¼ Dmr � r
dEðcmðr; tÞÞ
dcmðr; tÞ þ

_gmðcmðr; tÞÞ

� _cðcmðr; tÞ; cSIAðr; tÞÞ ð1Þ

where E ¼
R

V ðFðcmðr; tÞÞ þ j
2 ðjrcmðr; tÞj2ÞdV is the total free energy of

the system, including the chemical free energy Fðcmðr; tÞÞ and the
gradient energy. j is the gradient coefficient associated with the
void surface energy. The chemical free energy is a double-well po-
tential which describes a two-phase system, i.e., a solid solution
phase with an equilibrium vacancy concentration, ceq0

m , and a void
phase with an equilibrium vacancy concentration, ceq1

m . Dm is the va-
cancy diffusivity. The second and third terms in Eq. (1) are the gen-
eration rate of vacancies and the reaction rate between vacancies
and SIA, respectively. Eq. (1) is solved efficiently in Fourier space
[33].

A one-dimensional random walker model is used to describe
the directional migration of SIAs in this system [34]. In a contin-
uum-space, continuum-time random walk starting at time t ¼ 0
from the position r0 ¼ 0, the probability that the walker reaches
the position r at time t is the solution (Green’s function) of the dif-
fusion equation

@pðr; tÞ
@t

¼ DSIADpðr; tÞ ð2Þ

with an initial condition pðr;0Þ ¼ d and boundary condition
pðr ¼ 1; tÞ ¼ 0. DSIA is the diffusivity of an SIA. SIAs migrate along
< 110 > directions in FCC crystals. We assume the probability of
migration along each < 110 > direction is the same. For a given
SIA distribution, cSIAðr; tÞ at time t, the change of SIA concentration,
DcSIAðr; tÞ, after a time step Dt includes three contributions. The first
contribution is the net flux along each of the 12 < 110 > directions:

DcSIAðr; tÞ ¼
X12

k¼1

Z Rk

0

1
6

cSIAðrk; tÞðpðdrk;DtÞ � pð0; 0Þdðrk � rÞÞdrk

ð3Þ

The summation over k runs for 12 different < 110 > directions, r0k is
a point on lines which pass through the point r and have one of the
twelve < 11 0 > directions, and r0k ¼ jr0k � rj is the distance between
r and r0k. Rk ¼minð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSIADt
p

;R0
KÞ is the minimum value of the mean

free path
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSIADt
p

of an SIA during the time step and R0
k the distance

between the point r and the surface of the nearest void along the
kth direction. The second contribution is the generation of SIAs
_gSIAðcmðr; tÞÞDt, and the third contribution is the reaction between
vacancies and SIAs � _cðcmðr; tÞ; cSIAðr; tÞÞDt, where the minus sign ac-
counts for recombination reactions that reduce both vacancy and
SIA concentrations. It is usually true that SIAs cannot penetrate
through voids, such that SIAs accumulate on the boundaries of voids
when SIAs approach voids. Therefore, if r is located on a void
boundary,

DcSIAðr;tÞ¼
X12

k¼1

Z Rk

0

1
6

cSIAðr0k;tÞ

�
Z ffiffiffiffiffiffiffiffiffiffi

DSIADt
p

dr0k

pðdr00k;DtÞdr00k�pð0;0Þdðr0k� rÞ
 !

dr0k ð4Þ

The summation runs over the 12 possible directions where the va-
cancy concentration at the first nearest point of the point r is lesser
than 0.5. This means that r0k is not a point belonging to a void.
DcSIAðr; tÞ will be zero if r is located inside of a void.

Coupling the Cahn–Hilliard Eq. (1) with the one-dimensional
random walk model allows the evolution of vacancies and SIAs’
to be simulated. The following thermodynamic properties are used
in the simulations: the chemical free energy Fðcmðr; tÞÞ ¼
�0:1ðcmðr; tÞ � 0:5Þ2 þ 0:205ðcmðr; tÞ � 0:5Þ4 which gives the equi-
librium vacancy concentration ceq0

m ¼ 0:006 and ceq1
m ¼ 0:994 for

the solid solution and void phases, respectively; the generation
rates of vacancies and interstitials _gmðcmðr; tÞÞ ¼ randðÞ _g0

m , and
_gSIAðcmðr; tÞÞ ¼ randðÞ _g0

SIA if cmðr; tÞ 6 0:1, _gmðcmðr; tÞÞ ¼ _g0
me�ð10cmðr;tÞ�1Þ,

and _gSIAðcmðr; tÞÞ ¼ _g0
SIAe�ð10cmðr;tÞ�1Þ if cmðr; tÞ > 0:1 and a reaction rate

_cðcmðr; tÞ; cSIAðr; tÞÞ ¼ 0:5cmðr; tÞcSIAðr; tÞ. randðÞ is a random function
which generates a number in the region ½0;1�. Simulations are car-
ried out in a 512Dx� 512Dx two-dimensional simulation cell with
about 400 randomly distributed small voids. The void diameter
varies from 2Dx to 6Dx, where Dx is the simulation grid spacing.
The SIAs are assumed to migrate along < 110 > and < �110 >
directions. The initial overall vacancy concentration is 0.05, and
initial SIA concentration is zero. Void nuclei are randomly intro-
duced at position r� in the simulation cell if cmðr; tÞ < 0:5 andR

X cmðr; tÞdS > 8Dx2 in the region X : jr � r�j 6 15Dx. The equilib-
rium vacancy concentration ceq

m ¼ 0:994 is assigned inside the void
nucleus while its size is determined by total vacancy conservation
in X and the equilibrium vacancy concentration of the solid
solution phase ceq0

m ¼ 0:006. t� ¼ Dmt=Dx2 is dimensionless time. A
time step of Dt� ¼ 0:1 and gradient coefficient j� ¼ j=Dx2 ¼ 0:1
are used in the simulations.
3. Results

Fig. 1 shows the temporal evolution of a void ensemble for the
case with the generation rates of vacancies and interstitials
_g0
m ¼ _g0

SIA ¼ 0:00001 and DSIA
Dm
¼ 10;000 so that the diffusivity of 1-D

SIAs is four orders of magnitude larger than that of vacancies.
The color in the figure denotes the vacancy concentration. cmðr; tÞ
is 1.0 in the red regions that represent voids and cmðr; tÞ is very
small in the blue region (the matrix). The white A–A and B–B lines
show < 110 > and < �110 > directions. The results demonstrate
that a void lattice forms gradually. Tracking the evolution of indi-
vidual voids, we find that (1) most surviving voids in the final void
lattice are not exactly on final void lattice sites at the initial stage,
rather they shift from their original positions to final lattice posi-
tions, (2) most voids away from lattice positions shrink because
they are not in the shadow of neighbor voids, and face a larger
interstitial flux, (3) shrinking voids cause an increase in local
vacancy concentration and lead to new void nucleation near void
lattice sites. The new nucleated void like the void labeled C in
the Fig. 1 grows and becomes a void on a site in the perfect void
lattice, and (4) larger voids on void lattice sites decrease their
growth rate while smaller voids on lattice sites increase their



Fig. 1. Temporal evolution of a void ensemble for the case with generation rates of vacancies and interstitials _g0
m ¼ _g0

SIA ¼ 0:00001 and DSIA
Dm
¼ 10;000 . The color in the figure

denotes vacancy concentration. cmðr; tÞ is 1.0 in the red regions that represent voids. cmðr; tÞ is very small in the blue region (the matrix). The white A–A and B–B lines show
< 110 > and < �11 0 > directions. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Temporal evolution of a void ensemble for the case with generation rates of vacancies and SIAs _g0
m ¼ _g0

SIA ¼ 0:00001 and DSIA
Dm
¼ 100. The color in the figure denotes

vacancy concentration as in Fig. 1 above. The white A–A and B–B lines show < 11 0 > and < �110 > directions. (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)

S. Hu, C.H. Henager Jr / Journal of Nuclear Materials 394 (2009) 155–159 157
growth rate. These observations explain the formation of uniform
void sizes in the void lattice. The simulation results confirm that
the void lattice can be formed by slow and isotropic diffusion of
vacancies, one-dimensional migration of SIAs, and continuous void
nucleation. Theoretical models [14] predict that the void lattice
will form when the mean free path of the one-dimensionally mov-
ing SIAs becomes comparable with the average distance between
the voids at a sufficiently high void density. The mean free path
can be calculated by k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DSIAsc
p

, where sc is the mean lifetime
or the average duration between consecutive changes of mobile
and immobile interstitials or moving directions. Therefore, it is ex-
pected that the diffusivity of SIAs affect the formation of the void



Fig. 3. Final void distributions for cases with generation rates of vacancies and SIAs _g0
m ¼ _g0

SIA ¼ 0:00001 and different diffusivity ratios DSIA
Dm

: (a) DSIA
Dm
¼ 10, (b) DSIA

Dm
¼ 100,

(c) DSIA
Dm
¼ 1000, and (d) DSIA

Dm
¼ 10; 000.

Fig. 4. Temporal evolution of a void ensemble for the case with generation rates of vacancies and SIAs _g0
m ¼ _g0

SIA ¼ 0:002 and DSIA
Dm
¼ 10; 000. The color in the figure denotes

vacancy concentration as before. The white A–A and B–B lines show < 1 10 > and < �11 0 > directions. (For interpretation of the references in color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Final void distributions for cases with diffusivity ratios DSIA
Dm
¼ 10;000 and different generation rates of vacancies and SIAs _g0

m ¼ _g0
SIA. (a) _g0

SIA ¼ 0:002, (b) _gSIA ¼ 0:0005,
(c) _g0

SIA ¼ 0:0001, and (d) _g0
SIA ¼ 0:00001.

158 S. Hu, C.H. Henager Jr / Journal of Nuclear Materials 394 (2009) 155–159
lattice. With the same model parameters used in the simulation
above except the diffusivity of SIAs, the simulation is repeated.
Fig. 2 shows the temporal evolution of a void ensemble for the case
with DSIA

Dm
¼ 100. We can find that no void lattice forms if the diffu-

sivity of SIAs or the mean free lifetime is reduced. But short-range
ordering of voids is observed in this case. Fig. 3 summarizes the fi-
nal void microstructures as a function of SIA to vacancy diffusivity
ratio. These results indicate that voids are distributed randomly
when the SIAs’ diffusivity is one order of magnitude larger than
that of vacancies, i.e., DSIA

Dm
¼ 10. As the ratio DSIA

Dm
increases the void
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arrangement varies from short-range ordering to long-range order-
ing. A void lattice forms when DSIA

Dm
reaches a critical value DSIA

Dm
� 104.

The result confirms the theoretical prediction [14] that a critical
mean free path (k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DSIAsc
p

) exists for the formation of void lat-
tices. Using the migration activation energy DQ i of interstitials
(0.08 eV) and vacancy (0.8 eV) in Fe [27], we can calculate the dif-
fusivity Di ¼ D0 expð� DQi

kBTÞ. It is found that DSIA
Dm

is about 104 at the
temperature range between 700 and 900 K which is a typical oper-
ation temperature of nuclear plant component materials.

Next we study the effect of the generation rate of surviving
interstitials and vacancies during the displacement cascade on void
lattice formation. Fig. 4 shows the evolution of a void ensemble
with a generation rate _g0

m ¼ _g0
SIA ¼ 0:002 and a diffusivity ratio

DSIA
Dm
¼ 10;000. A high generation rate of interstitials implies a high

interstitial flux in the simulation cell. We can clearly see that iso-
lated voids are more readily annihilated in this case whether they
are near lattice sites or not. Only ordered void clusters, which have
the same orientation as that of the void lattice, survive in this sim-
ulation. It is found that void shapes become more faceted and
irregular if we compare Fig. 1 and Fig. 4. The annihilation, nucle-
ation, and uniform growth of voids can be observed during the evo-
lution of the cluster C1 and C2 shown in Fig. 4. The effect of
generation rates of vacancies and interstitials on the formation of
void lattices is summarized in Fig. 5. We conclude that increasing
the generation rate of interstitials delays the formation of the void
lattice for a given diffusivity ratio DSIA

Dm
¼ 10;000.

4. Conclusions

In summary, an efficient phase-field model is developed for
investigating the formation of void lattices in metals involving va-
cancy diffusion and 1-D SIA migration during irradiation. The sim-
ulations predict the morphological evolution of a void ensemble,
and can be used to explore the effect of thermodynamic and kinetic
properties of defects, such as diffusivity and defect generation rates
on the evolution of void microstructures. The model will be ex-
tended to study the effect of distributed dislocations, 2-D SIA
migration, and the elastic interaction between defects on void for-
mation by integrating previous phase-field models developed by
our research group [24,35].
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